Source code for etna.models.holt_winters

import warnings
from datetime import datetime
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union

import numpy as np
import pandas as pd
from scipy.special import inv_boxcox
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from statsmodels.tsa.holtwinters.results import HoltWintersResultsWrapper

from etna.distributions import BaseDistribution
from etna.distributions import CategoricalDistribution
from etna.models.base import BaseAdapter
from etna.models.base import NonPredictionIntervalContextIgnorantAbstractModel
from etna.models.mixins import NonPredictionIntervalContextIgnorantModelMixin
from etna.models.mixins import PerSegmentModelMixin
from etna.models.utils import determine_freq
from etna.models.utils import determine_num_steps
from etna.models.utils import select_observations


[docs]class _HoltWintersAdapter(BaseAdapter): """ Class for holding Holt-Winters' exponential smoothing model. Notes ----- We use :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` model from statsmodels package. """ def __init__( self, trend: Optional[str] = None, damped_trend: bool = False, seasonal: Optional[str] = None, seasonal_periods: Optional[int] = None, initialization_method: str = "estimated", initial_level: Optional[float] = None, initial_trend: Optional[float] = None, initial_seasonal: Optional[Sequence[float]] = None, use_boxcox: Union[bool, str, float] = False, bounds: Optional[Dict[str, Tuple[float, float]]] = None, dates: Optional[Sequence[datetime]] = None, freq: Optional[str] = None, missing: str = "none", smoothing_level: Optional[float] = None, smoothing_trend: Optional[float] = None, smoothing_seasonal: Optional[float] = None, damping_trend: Optional[float] = None, **fit_kwargs, ): """ Init Holt-Winters' model with given params. Parameters ---------- trend: Type of trend component. One of: * 'add' * 'mul' * 'additive' * 'multiplicative' * None damped_trend: Should the trend component be damped. seasonal: Type of seasonal component. One of: * 'add' * 'mul' * 'additive' * 'multiplicative' * None seasonal_periods: The number of periods in a complete seasonal cycle, e.g., 4 for quarterly data or 7 for daily data with a weekly cycle. initialization_method: Method for initialize the recursions. One of: * None * 'estimated' * 'heuristic' * 'legacy-heuristic' * 'known' None defaults to the pre-0.12 behavior where initial values are passed as part of ``fit``. If any of the other values are passed, then the initial values must also be set when constructing the model. If 'known' initialization is used, then ``initial_level`` must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if applicable. Default is 'estimated'. "legacy-heuristic" uses the same values that were used in statsmodels 0.11 and earlier. initial_level: The initial level component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. initial_trend: The initial trend component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. initial_seasonal: The initial seasonal component. An array of length `seasonal` or length ``seasonal - 1`` (in which case the last initial value is computed to make the average effect zero). Only used if initialization is 'known'. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. use_boxcox: {True, False, 'log', float}, optional Should the Box-Cox transform be applied to the data first? One of: * True * False * 'log': apply log * float: lambda value bounds: An dictionary containing bounds for the parameters in the model, excluding the initial values if estimated. The keys of the dictionary are the variable names, e.g., smoothing_level or initial_slope. The initial seasonal variables are labeled initial_seasonal.<j> for j=0,...,m-1 where m is the number of period in a full season. Use None to indicate a non-binding constraint, e.g., (0, None) constrains a parameter to be non-negative. dates: An array-like object of datetime objects. If a Pandas object is given for endog, it is assumed to have a DateIndex. freq: The frequency of the time-series. A Pandas offset or 'B', 'D', 'W', 'M', 'A', or 'Q'. This is optional if dates are given. missing: Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none'. smoothing_level: The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value. smoothing_trend: The beta value of the Holt's trend method, if the value is set then this value will be used as the value. smoothing_seasonal: The gamma value of the holt winters seasonal method, if the value is set then this value will be used as the value. damping_trend: The phi value of the damped method, if the value is set then this value will be used as the value. fit_kwargs: Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`. """ self.trend = trend self.damped_trend = damped_trend self.seasonal = seasonal self.seasonal_periods = seasonal_periods self.initialization_method = initialization_method self.initial_level = initial_level self.initial_trend = initial_trend self.initial_seasonal = initial_seasonal self.use_boxcox = use_boxcox self.bounds = bounds self.dates = dates self.freq = freq self.missing = missing self.smoothing_level = smoothing_level self.smoothing_trend = smoothing_trend self.smoothing_seasonal = smoothing_seasonal self.damping_trend = damping_trend self.fit_kwargs = fit_kwargs self._model: Optional[ExponentialSmoothing] = None self._result: Optional[HoltWintersResultsWrapper] = None self._first_train_timestamp: Optional[pd.Timestamp] = None self._last_train_timestamp: Optional[pd.Timestamp] = None self._train_freq: Optional[str] = None
[docs] def fit(self, df: pd.DataFrame, regressors: List[str]) -> "_HoltWintersAdapter": """ Fit Holt-Winters' model. Parameters ---------- df: Features dataframe regressors: List of the columns with regressors(ignored in this model) Returns ------- : Fitted model """ self._train_freq = determine_freq(timestamps=df["timestamp"]) self._check_df(df) targets = df["target"] targets.index = df["timestamp"] self._model = ExponentialSmoothing( endog=targets, trend=self.trend, damped_trend=self.damped_trend, seasonal=self.seasonal, seasonal_periods=self.seasonal_periods, initialization_method=self.initialization_method, initial_level=self.initial_level, initial_trend=self.initial_trend, initial_seasonal=self.initial_seasonal, use_boxcox=self.use_boxcox, bounds=self.bounds, dates=self.dates, freq=self.freq, missing=self.missing, ) self._result = self._model.fit( smoothing_level=self.smoothing_level, smoothing_trend=self.smoothing_trend, smoothing_seasonal=self.smoothing_seasonal, damping_trend=self.damping_trend, **self.fit_kwargs, ) self._first_train_timestamp = targets.index.min() self._last_train_timestamp = targets.index.max() return self
[docs] def predict(self, df: pd.DataFrame) -> np.ndarray: """ Compute predictions from a Holt-Winters' model. Parameters ---------- df: Features dataframe Returns ------- : Array with predictions """ if self._result is None or self._model is None: raise ValueError("This model is not fitted! Fit the model before calling predict method!") self._check_df(df) forecast = self._result.predict(start=df["timestamp"].min(), end=df["timestamp"].max()) y_pred = forecast.values return y_pred
def _check_df(self, df: pd.DataFrame): columns = df.columns columns_not_used = set(columns).difference({"target", "timestamp"}) if columns_not_used: warnings.warn( message=f"This model does not work with exogenous features and regressors.\n " f"{columns_not_used} will be dropped" )
[docs] def get_model(self) -> HoltWintersResultsWrapper: """Get :py:class:`statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper` model that was fitted inside etna class. Returns ------- : Internal model """ return self._result
def _check_mul_components(self): """Raise error if model has multiplicative components.""" model = self._model if model is None: raise ValueError("This model is not fitted!") if (model.trend is not None and model.trend == "mul") or ( model.seasonal is not None and model.seasonal == "mul" ): raise ValueError("Forecast decomposition is only supported for additive components!") def _rescale_components(self, components: pd.DataFrame) -> pd.DataFrame: """Rescale components when Box-Cox transform used.""" if self._result is None: raise ValueError("This model is not fitted!") pred = np.sum(components.values, axis=1) transformed_pred = inv_boxcox(pred, self._result.params["lamda"]) components *= (transformed_pred / pred).reshape((-1, 1)) return components
[docs] def forecast_components(self, df: pd.DataFrame) -> pd.DataFrame: """Estimate forecast components. Parameters ---------- df: features dataframe Returns ------- : dataframe with forecast components """ model = self._model fit_result = self._result if fit_result is None or model is None or self._train_freq is None: raise ValueError("This model is not fitted!") if df["timestamp"].min() <= self._last_train_timestamp: raise ValueError("To estimate in-sample prediction decomposition use `predict` method.") horizon = determine_num_steps( start_timestamp=self._last_train_timestamp, end_timestamp=df["timestamp"].max(), freq=self._train_freq ) horizon_steps = np.arange(1, horizon + 1) self._check_mul_components() self._check_df(df) level = fit_result.level.values trend = fit_result.trend.values season = fit_result.season.values components = {"target_component_level": level[-1] * np.ones(horizon)} if model.trend is not None: t = horizon_steps.copy() if model.damped_trend: t = np.cumsum(fit_result.params["damping_trend"] ** t) components["target_component_trend"] = trend[-1] * t if model.seasonal is not None: last_period = len(season) seasonal_periods = fit_result.model.seasonal_periods k = horizon_steps // seasonal_periods components["target_component_seasonality"] = season[ last_period + horizon_steps - seasonal_periods * (k + 1) - 1 ] components_df = pd.DataFrame(data=components) if model._use_boxcox: components_df = self._rescale_components(components=components_df) components_df = select_observations( df=components_df, timestamps=df["timestamp"], end=df["timestamp"].max(), periods=horizon, freq=self._train_freq, ) return components_df
[docs] def predict_components(self, df: pd.DataFrame) -> pd.DataFrame: """Estimate prediction components. Parameters ---------- df: features dataframe Returns ------- : dataframe with prediction components """ model = self._model fit_result = self._result if fit_result is None or model is None or self._train_freq is None: raise ValueError("This model is not fitted!") if df["timestamp"].min() < self._first_train_timestamp or df["timestamp"].max() > self._last_train_timestamp: raise ValueError("To estimate out-of-sample prediction decomposition use `forecast` method.") self._check_mul_components() self._check_df(df) level = fit_result.level.values trend = fit_result.trend.values season = fit_result.season.values components = { "target_component_level": np.concatenate([[fit_result.params["initial_level"]], level[:-1]]), } if model.trend is not None: trend = np.concatenate([[fit_result.params["initial_trend"]], trend[:-1]]) if model.damped_trend: trend *= fit_result.params["damping_trend"] components["target_component_trend"] = trend if model.seasonal is not None: seasonal_periods = model.seasonal_periods components["target_component_seasonality"] = np.concatenate( [fit_result.params["initial_seasons"], season[:-seasonal_periods]] ) components_df = pd.DataFrame(data=components) if model._use_boxcox: components_df = self._rescale_components(components=components_df) components_df = select_observations( df=components_df, timestamps=df["timestamp"], start=self._first_train_timestamp, end=self._last_train_timestamp, freq=self._train_freq, ) return components_df
[docs]class HoltWintersModel( PerSegmentModelMixin, NonPredictionIntervalContextIgnorantModelMixin, NonPredictionIntervalContextIgnorantAbstractModel, ): """ Holt-Winters' etna model. This model corresponds to :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing`. Notes ----- The model :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` is used in the implementation. This model supports in-sample and out-of-sample prediction decomposition. Prediction components for Holt-Winters model are: level, trend and seasonality. For in-sample decomposition, components are obtained directly from the fitted model. For out-of-sample, components estimated using an analytical form of the prediction function. """ def __init__( self, trend: Optional[str] = None, damped_trend: bool = False, seasonal: Optional[str] = None, seasonal_periods: Optional[int] = None, initialization_method: str = "estimated", initial_level: Optional[float] = None, initial_trend: Optional[float] = None, initial_seasonal: Optional[Sequence[float]] = None, use_boxcox: Union[bool, str, float] = False, bounds: Optional[Dict[str, Tuple[float, float]]] = None, dates: Optional[Sequence[datetime]] = None, freq: Optional[str] = None, missing: str = "none", smoothing_level: Optional[float] = None, smoothing_trend: Optional[float] = None, smoothing_seasonal: Optional[float] = None, damping_trend: Optional[float] = None, **fit_kwargs, ): """ Init Holt-Winters' model with given params. Parameters ---------- trend: Type of trend component. One of: * 'add' * 'mul' * 'additive' * 'multiplicative' * None damped_trend: Should the trend component be damped. seasonal: Type of seasonal component. One of: * 'add' * 'mul' * 'additive' * 'multiplicative' * None seasonal_periods: The number of periods in a complete seasonal cycle, e.g., 4 for quarterly data or 7 for daily data with a weekly cycle. initialization_method: Method for initialize the recursions. One of: * None * 'estimated' * 'heuristic' * 'legacy-heuristic' * 'known' None defaults to the pre-0.12 behavior where initial values are passed as part of ``fit``. If any of the other values are passed, then the initial values must also be set when constructing the model. If 'known' initialization is used, then ``initial_level`` must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if applicable. Default is 'estimated'. "legacy-heuristic" uses the same values that were used in statsmodels 0.11 and earlier. initial_level: The initial level component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. initial_trend: The initial trend component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. initial_seasonal: The initial seasonal component. An array of length `seasonal` or length ``seasonal - 1`` (in which case the last initial value is computed to make the average effect zero). Only used if initialization is 'known'. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. use_boxcox: {True, False, 'log', float}, optional Should the Box-Cox transform be applied to the data first? One of: * True * False * 'log': apply log * float: lambda value bounds: An dictionary containing bounds for the parameters in the model, excluding the initial values if estimated. The keys of the dictionary are the variable names, e.g., smoothing_level or initial_slope. The initial seasonal variables are labeled initial_seasonal.<j> for j=0,...,m-1 where m is the number of period in a full season. Use None to indicate a non-binding constraint, e.g., (0, None) constrains a parameter to be non-negative. dates: An array-like object of datetime objects. If a Pandas object is given for endog, it is assumed to have a DateIndex. freq: The frequency of the time-series. A Pandas offset or 'B', 'D', 'W', 'M', 'A', or 'Q'. This is optional if dates are given. missing: Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none'. smoothing_level: The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value. smoothing_trend: The beta value of the Holt's trend method, if the value is set then this value will be used as the value. smoothing_seasonal: The gamma value of the holt winters seasonal method, if the value is set then this value will be used as the value. damping_trend: The phi value of the damped method, if the value is set then this value will be used as the value. fit_kwargs: Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`. """ self.trend = trend self.damped_trend = damped_trend self.seasonal = seasonal self.seasonal_periods = seasonal_periods self.initialization_method = initialization_method self.initial_level = initial_level self.initial_trend = initial_trend self.initial_seasonal = initial_seasonal self.use_boxcox = use_boxcox self.bounds = bounds self.dates = dates self.freq = freq self.missing = missing self.smoothing_level = smoothing_level self.smoothing_trend = smoothing_trend self.smoothing_seasonal = smoothing_seasonal self.damping_trend = damping_trend self.fit_kwargs = fit_kwargs super().__init__( base_model=_HoltWintersAdapter( trend=self.trend, damped_trend=self.damped_trend, seasonal=self.seasonal, seasonal_periods=self.seasonal_periods, initialization_method=self.initialization_method, initial_level=self.initial_level, initial_trend=self.initial_trend, initial_seasonal=self.initial_seasonal, use_boxcox=self.use_boxcox, bounds=self.bounds, dates=self.dates, freq=self.freq, missing=self.missing, smoothing_level=self.smoothing_level, smoothing_trend=self.smoothing_trend, smoothing_seasonal=self.smoothing_seasonal, damping_trend=self.damping_trend, **self.fit_kwargs, ) )
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]: """Get default grid for tuning hyperparameters. This grid tunes parameters: ``trend``, ``damped_trend``, ``use_boxcox``. If ``self.seasonal`` is not None, then it also tunes ``seasonal`` parameter. Other parameters are expected to be set by the user. Returns ------- : Grid to tune. """ grid: Dict[str, "BaseDistribution"] = { "trend": CategoricalDistribution(["add", "mul", None]), "damped_trend": CategoricalDistribution([False, True]), "use_boxcox": CategoricalDistribution([False, True]), } if self.seasonal is not None: grid.update({"seasonal": CategoricalDistribution(["add", "mul", None])}) return grid
[docs]class HoltModel( PerSegmentModelMixin, NonPredictionIntervalContextIgnorantModelMixin, NonPredictionIntervalContextIgnorantAbstractModel, ): """ Holt etna model. This is a restricted version of :py:class:`~etna.models.holt_winters.HoltWintersModel`. And it corresponds to :py:class:`statsmodels.tsa.holtwinters.Holt`. Notes ----- The model :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` is used in the implementation. In statsmodels package the model :py:class:`statsmodels.tsa.holtwinters.Holt` is implemented as a restricted version of :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` model. This model supports in-sample and out-of-sample prediction decomposition. Prediction components for Holt model are: level and trend. For in-sample decomposition, components are obtained directly from the fitted model. For out-of-sample, components estimated using an analytical form of the prediction function. """ def __init__( self, exponential: bool = False, damped_trend: bool = False, initialization_method: str = "estimated", initial_level: Optional[float] = None, initial_trend: Optional[float] = None, smoothing_level: Optional[float] = None, smoothing_trend: Optional[float] = None, damping_trend: Optional[float] = None, **fit_kwargs, ): """ Init Holt model with given params. Parameters ---------- exponential: Type of trend component. One of: * False: additive trend * True: multiplicative trend damped_trend: Should the trend component be damped. initialization_method: Method for initialize the recursions. One of: * None * 'estimated' * 'heuristic' * 'legacy-heuristic' * 'known' None defaults to the pre-0.12 behavior where initial values are passed as part of ``fit``. If any of the other values are passed, then the initial values must also be set when constructing the model. If 'known' initialization is used, then ``initial_level`` must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if applicable. Default is 'estimated'. "legacy-heuristic" uses the same values that were used in statsmodels 0.11 and earlier. initial_level: The initial level component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. initial_trend: The initial trend component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. smoothing_level: The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value. smoothing_trend: The beta value of the Holt's trend method, if the value is set then this value will be used as the value. damping_trend: The phi value of the damped method, if the value is set then this value will be used as the value. fit_kwargs: Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`. """ self.exponential = exponential trend = "mul" if exponential else "add" self.damped_trend = damped_trend self.initialization_method = initialization_method self.initial_level = initial_level self.initial_trend = initial_trend self.smoothing_level = smoothing_level self.smoothing_trend = smoothing_trend self.damping_trend = damping_trend self.fit_kwargs = fit_kwargs super().__init__( base_model=_HoltWintersAdapter( trend=trend, damped_trend=self.damped_trend, initialization_method=self.initialization_method, initial_level=self.initial_level, initial_trend=self.initial_trend, smoothing_level=self.smoothing_level, smoothing_trend=self.smoothing_trend, damping_trend=self.damping_trend, **self.fit_kwargs, ) )
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]: """Get default grid for tuning hyperparameters. Returns ------- : Grid to tune. """ return { "exponential": CategoricalDistribution([False, True]), "damped_trend": CategoricalDistribution([False, True]), }
[docs]class SimpleExpSmoothingModel( PerSegmentModelMixin, NonPredictionIntervalContextIgnorantModelMixin, NonPredictionIntervalContextIgnorantAbstractModel, ): """ Exponential smoothing etna model. This is a restricted version of :py:class:`~etna.models.holt_winters.HoltWintersModel`. And it corresponds to :py:class:`statsmodels.tsa.holtwinters.SimpleExpSmoothing`. Notes ----- The model :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` is used in the implementation. In statsmodels package the model :py:class:`statsmodels.tsa.holtwinters.SimpleExpSmoothing` is implemented as a restricted version of :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` model. This model supports in-sample and out-of-sample prediction decomposition. For in-sample decomposition, level component is obtained directly from the fitted model. For out-of-sample, it estimated using an analytical form of the prediction function. """ def __init__( self, initialization_method: str = "estimated", initial_level: Optional[float] = None, smoothing_level: Optional[float] = None, **fit_kwargs, ): """ Init Exponential smoothing model with given params. Parameters ---------- initialization_method: Method for initialize the recursions. One of: * None * 'estimated' * 'heuristic' * 'legacy-heuristic' * 'known' None defaults to the pre-0.12 behavior where initial values are passed as part of ``fit``. If any of the other values are passed, then the initial values must also be set when constructing the model. If 'known' initialization is used, then ``initial_level`` must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if applicable. Default is 'estimated'. "legacy-heuristic" uses the same values that were used in statsmodels 0.11 and earlier. initial_level: The initial level component. Required if estimation method is "known". If set using either "estimated" or "heuristic" this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters. smoothing_level: The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value. fit_kwargs: Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`. """ self.initialization_method = initialization_method self.initial_level = initial_level self.smoothing_level = smoothing_level self.fit_kwargs = fit_kwargs super().__init__( base_model=_HoltWintersAdapter( initialization_method=self.initialization_method, initial_level=self.initial_level, smoothing_level=self.smoothing_level, **self.fit_kwargs, ) )