import warnings
from datetime import datetime
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
import pandas as pd
from scipy.special import inv_boxcox
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from statsmodels.tsa.holtwinters.results import HoltWintersResultsWrapper
from etna.distributions import BaseDistribution
from etna.distributions import CategoricalDistribution
from etna.models.base import BaseAdapter
from etna.models.base import NonPredictionIntervalContextIgnorantAbstractModel
from etna.models.mixins import NonPredictionIntervalContextIgnorantModelMixin
from etna.models.mixins import PerSegmentModelMixin
from etna.models.utils import determine_freq
from etna.models.utils import determine_num_steps
from etna.models.utils import select_observations
[docs]class _HoltWintersAdapter(BaseAdapter):
"""
Class for holding Holt-Winters' exponential smoothing model.
Notes
-----
We use :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` model from statsmodels package.
"""
def __init__(
self,
trend: Optional[str] = None,
damped_trend: bool = False,
seasonal: Optional[str] = None,
seasonal_periods: Optional[int] = None,
initialization_method: str = "estimated",
initial_level: Optional[float] = None,
initial_trend: Optional[float] = None,
initial_seasonal: Optional[Sequence[float]] = None,
use_boxcox: Union[bool, str, float] = False,
bounds: Optional[Dict[str, Tuple[float, float]]] = None,
dates: Optional[Sequence[datetime]] = None,
freq: Optional[str] = None,
missing: str = "none",
smoothing_level: Optional[float] = None,
smoothing_trend: Optional[float] = None,
smoothing_seasonal: Optional[float] = None,
damping_trend: Optional[float] = None,
**fit_kwargs,
):
"""
Init Holt-Winters' model with given params.
Parameters
----------
trend:
Type of trend component. One of:
* 'add'
* 'mul'
* 'additive'
* 'multiplicative'
* None
damped_trend:
Should the trend component be damped.
seasonal:
Type of seasonal component. One of:
* 'add'
* 'mul'
* 'additive'
* 'multiplicative'
* None
seasonal_periods:
The number of periods in a complete seasonal cycle, e.g., 4 for
quarterly data or 7 for daily data with a weekly cycle.
initialization_method:
Method for initialize the recursions. One of:
* None
* 'estimated'
* 'heuristic'
* 'legacy-heuristic'
* 'known'
None defaults to the pre-0.12 behavior where initial values
are passed as part of ``fit``. If any of the other values are
passed, then the initial values must also be set when constructing
the model. If 'known' initialization is used, then ``initial_level``
must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if
applicable. Default is 'estimated'. "legacy-heuristic" uses the same
values that were used in statsmodels 0.11 and earlier.
initial_level:
The initial level component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
initial_trend:
The initial trend component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
initial_seasonal:
The initial seasonal component. An array of length `seasonal`
or length ``seasonal - 1`` (in which case the last initial value
is computed to make the average effect zero). Only used if
initialization is 'known'. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
use_boxcox: {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? One of:
* True
* False
* 'log': apply log
* float: lambda value
bounds:
An dictionary containing bounds for the parameters in the model,
excluding the initial values if estimated. The keys of the dictionary
are the variable names, e.g., smoothing_level or initial_slope.
The initial seasonal variables are labeled initial_seasonal.<j>
for j=0,...,m-1 where m is the number of period in a full season.
Use None to indicate a non-binding constraint, e.g., (0, None)
constrains a parameter to be non-negative.
dates:
An array-like object of datetime objects. If a Pandas object is given
for endog, it is assumed to have a DateIndex.
freq:
The frequency of the time-series. A Pandas offset or 'B', 'D', 'W',
'M', 'A', or 'Q'. This is optional if dates are given.
missing:
Available options are 'none', 'drop', and 'raise'. If 'none', no nan
checking is done. If 'drop', any observations with nans are dropped.
If 'raise', an error is raised. Default is 'none'.
smoothing_level:
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend:
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
smoothing_seasonal:
The gamma value of the holt winters seasonal method, if the value
is set then this value will be used as the value.
damping_trend:
The phi value of the damped method, if the value is
set then this value will be used as the value.
fit_kwargs:
Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`.
"""
self.trend = trend
self.damped_trend = damped_trend
self.seasonal = seasonal
self.seasonal_periods = seasonal_periods
self.initialization_method = initialization_method
self.initial_level = initial_level
self.initial_trend = initial_trend
self.initial_seasonal = initial_seasonal
self.use_boxcox = use_boxcox
self.bounds = bounds
self.dates = dates
self.freq = freq
self.missing = missing
self.smoothing_level = smoothing_level
self.smoothing_trend = smoothing_trend
self.smoothing_seasonal = smoothing_seasonal
self.damping_trend = damping_trend
self.fit_kwargs = fit_kwargs
self._model: Optional[ExponentialSmoothing] = None
self._result: Optional[HoltWintersResultsWrapper] = None
self._first_train_timestamp: Optional[pd.Timestamp] = None
self._last_train_timestamp: Optional[pd.Timestamp] = None
self._train_freq: Optional[str] = None
[docs] def fit(self, df: pd.DataFrame, regressors: List[str]) -> "_HoltWintersAdapter":
"""
Fit Holt-Winters' model.
Parameters
----------
df:
Features dataframe
regressors:
List of the columns with regressors(ignored in this model)
Returns
-------
:
Fitted model
"""
self._train_freq = determine_freq(timestamps=df["timestamp"])
self._check_df(df)
targets = df["target"]
targets.index = df["timestamp"]
self._model = ExponentialSmoothing(
endog=targets,
trend=self.trend,
damped_trend=self.damped_trend,
seasonal=self.seasonal,
seasonal_periods=self.seasonal_periods,
initialization_method=self.initialization_method,
initial_level=self.initial_level,
initial_trend=self.initial_trend,
initial_seasonal=self.initial_seasonal,
use_boxcox=self.use_boxcox,
bounds=self.bounds,
dates=self.dates,
freq=self.freq,
missing=self.missing,
)
self._result = self._model.fit(
smoothing_level=self.smoothing_level,
smoothing_trend=self.smoothing_trend,
smoothing_seasonal=self.smoothing_seasonal,
damping_trend=self.damping_trend,
**self.fit_kwargs,
)
self._first_train_timestamp = targets.index.min()
self._last_train_timestamp = targets.index.max()
return self
[docs] def predict(self, df: pd.DataFrame) -> np.ndarray:
"""
Compute predictions from a Holt-Winters' model.
Parameters
----------
df:
Features dataframe
Returns
-------
:
Array with predictions
"""
if self._result is None or self._model is None:
raise ValueError("This model is not fitted! Fit the model before calling predict method!")
self._check_df(df)
forecast = self._result.predict(start=df["timestamp"].min(), end=df["timestamp"].max())
y_pred = forecast.values
return y_pred
def _check_df(self, df: pd.DataFrame):
columns = df.columns
columns_not_used = set(columns).difference({"target", "timestamp"})
if columns_not_used:
warnings.warn(
message=f"This model does not work with exogenous features and regressors.\n "
f"{columns_not_used} will be dropped"
)
[docs] def get_model(self) -> HoltWintersResultsWrapper:
"""Get :py:class:`statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper` model that was fitted inside etna class.
Returns
-------
:
Internal model
"""
return self._result
def _check_mul_components(self):
"""Raise error if model has multiplicative components."""
model = self._model
if model is None:
raise ValueError("This model is not fitted!")
if (model.trend is not None and model.trend == "mul") or (
model.seasonal is not None and model.seasonal == "mul"
):
raise ValueError("Forecast decomposition is only supported for additive components!")
def _rescale_components(self, components: pd.DataFrame) -> pd.DataFrame:
"""Rescale components when Box-Cox transform used."""
if self._result is None:
raise ValueError("This model is not fitted!")
pred = np.sum(components.values, axis=1)
transformed_pred = inv_boxcox(pred, self._result.params["lamda"])
components *= (transformed_pred / pred).reshape((-1, 1))
return components
[docs] def forecast_components(self, df: pd.DataFrame) -> pd.DataFrame:
"""Estimate forecast components.
Parameters
----------
df:
features dataframe
Returns
-------
:
dataframe with forecast components
"""
model = self._model
fit_result = self._result
if fit_result is None or model is None or self._train_freq is None:
raise ValueError("This model is not fitted!")
if df["timestamp"].min() <= self._last_train_timestamp:
raise ValueError("To estimate in-sample prediction decomposition use `predict` method.")
horizon = determine_num_steps(
start_timestamp=self._last_train_timestamp, end_timestamp=df["timestamp"].max(), freq=self._train_freq
)
horizon_steps = np.arange(1, horizon + 1)
self._check_mul_components()
self._check_df(df)
level = fit_result.level.values
trend = fit_result.trend.values
season = fit_result.season.values
components = {"target_component_level": level[-1] * np.ones(horizon)}
if model.trend is not None:
t = horizon_steps.copy()
if model.damped_trend:
t = np.cumsum(fit_result.params["damping_trend"] ** t)
components["target_component_trend"] = trend[-1] * t
if model.seasonal is not None:
last_period = len(season)
seasonal_periods = fit_result.model.seasonal_periods
k = horizon_steps // seasonal_periods
components["target_component_seasonality"] = season[
last_period + horizon_steps - seasonal_periods * (k + 1) - 1
]
components_df = pd.DataFrame(data=components)
if model._use_boxcox:
components_df = self._rescale_components(components=components_df)
components_df = select_observations(
df=components_df,
timestamps=df["timestamp"],
end=df["timestamp"].max(),
periods=horizon,
freq=self._train_freq,
)
return components_df
[docs] def predict_components(self, df: pd.DataFrame) -> pd.DataFrame:
"""Estimate prediction components.
Parameters
----------
df:
features dataframe
Returns
-------
:
dataframe with prediction components
"""
model = self._model
fit_result = self._result
if fit_result is None or model is None or self._train_freq is None:
raise ValueError("This model is not fitted!")
if df["timestamp"].min() < self._first_train_timestamp or df["timestamp"].max() > self._last_train_timestamp:
raise ValueError("To estimate out-of-sample prediction decomposition use `forecast` method.")
self._check_mul_components()
self._check_df(df)
level = fit_result.level.values
trend = fit_result.trend.values
season = fit_result.season.values
components = {
"target_component_level": np.concatenate([[fit_result.params["initial_level"]], level[:-1]]),
}
if model.trend is not None:
trend = np.concatenate([[fit_result.params["initial_trend"]], trend[:-1]])
if model.damped_trend:
trend *= fit_result.params["damping_trend"]
components["target_component_trend"] = trend
if model.seasonal is not None:
seasonal_periods = model.seasonal_periods
components["target_component_seasonality"] = np.concatenate(
[fit_result.params["initial_seasons"], season[:-seasonal_periods]]
)
components_df = pd.DataFrame(data=components)
if model._use_boxcox:
components_df = self._rescale_components(components=components_df)
components_df = select_observations(
df=components_df,
timestamps=df["timestamp"],
start=self._first_train_timestamp,
end=self._last_train_timestamp,
freq=self._train_freq,
)
return components_df
[docs]class HoltWintersModel(
PerSegmentModelMixin,
NonPredictionIntervalContextIgnorantModelMixin,
NonPredictionIntervalContextIgnorantAbstractModel,
):
"""
Holt-Winters' etna model.
This model corresponds to :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing`.
Notes
-----
The model :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` is used in the implementation.
This model supports in-sample and out-of-sample prediction decomposition.
Prediction components for Holt-Winters model are: level, trend and seasonality.
For in-sample decomposition, components are obtained directly from the fitted model. For out-of-sample,
components estimated using an analytical form of the prediction function.
"""
def __init__(
self,
trend: Optional[str] = None,
damped_trend: bool = False,
seasonal: Optional[str] = None,
seasonal_periods: Optional[int] = None,
initialization_method: str = "estimated",
initial_level: Optional[float] = None,
initial_trend: Optional[float] = None,
initial_seasonal: Optional[Sequence[float]] = None,
use_boxcox: Union[bool, str, float] = False,
bounds: Optional[Dict[str, Tuple[float, float]]] = None,
dates: Optional[Sequence[datetime]] = None,
freq: Optional[str] = None,
missing: str = "none",
smoothing_level: Optional[float] = None,
smoothing_trend: Optional[float] = None,
smoothing_seasonal: Optional[float] = None,
damping_trend: Optional[float] = None,
**fit_kwargs,
):
"""
Init Holt-Winters' model with given params.
Parameters
----------
trend:
Type of trend component. One of:
* 'add'
* 'mul'
* 'additive'
* 'multiplicative'
* None
damped_trend:
Should the trend component be damped.
seasonal:
Type of seasonal component. One of:
* 'add'
* 'mul'
* 'additive'
* 'multiplicative'
* None
seasonal_periods:
The number of periods in a complete seasonal cycle, e.g., 4 for
quarterly data or 7 for daily data with a weekly cycle.
initialization_method:
Method for initialize the recursions. One of:
* None
* 'estimated'
* 'heuristic'
* 'legacy-heuristic'
* 'known'
None defaults to the pre-0.12 behavior where initial values
are passed as part of ``fit``. If any of the other values are
passed, then the initial values must also be set when constructing
the model. If 'known' initialization is used, then ``initial_level``
must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if
applicable. Default is 'estimated'. "legacy-heuristic" uses the same
values that were used in statsmodels 0.11 and earlier.
initial_level:
The initial level component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
initial_trend:
The initial trend component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
initial_seasonal:
The initial seasonal component. An array of length `seasonal`
or length ``seasonal - 1`` (in which case the last initial value
is computed to make the average effect zero). Only used if
initialization is 'known'. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
use_boxcox: {True, False, 'log', float}, optional
Should the Box-Cox transform be applied to the data first? One of:
* True
* False
* 'log': apply log
* float: lambda value
bounds:
An dictionary containing bounds for the parameters in the model,
excluding the initial values if estimated. The keys of the dictionary
are the variable names, e.g., smoothing_level or initial_slope.
The initial seasonal variables are labeled initial_seasonal.<j>
for j=0,...,m-1 where m is the number of period in a full season.
Use None to indicate a non-binding constraint, e.g., (0, None)
constrains a parameter to be non-negative.
dates:
An array-like object of datetime objects. If a Pandas object is given
for endog, it is assumed to have a DateIndex.
freq:
The frequency of the time-series. A Pandas offset or 'B', 'D', 'W',
'M', 'A', or 'Q'. This is optional if dates are given.
missing:
Available options are 'none', 'drop', and 'raise'. If 'none', no nan
checking is done. If 'drop', any observations with nans are dropped.
If 'raise', an error is raised. Default is 'none'.
smoothing_level:
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend:
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
smoothing_seasonal:
The gamma value of the holt winters seasonal method, if the value
is set then this value will be used as the value.
damping_trend:
The phi value of the damped method, if the value is
set then this value will be used as the value.
fit_kwargs:
Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`.
"""
self.trend = trend
self.damped_trend = damped_trend
self.seasonal = seasonal
self.seasonal_periods = seasonal_periods
self.initialization_method = initialization_method
self.initial_level = initial_level
self.initial_trend = initial_trend
self.initial_seasonal = initial_seasonal
self.use_boxcox = use_boxcox
self.bounds = bounds
self.dates = dates
self.freq = freq
self.missing = missing
self.smoothing_level = smoothing_level
self.smoothing_trend = smoothing_trend
self.smoothing_seasonal = smoothing_seasonal
self.damping_trend = damping_trend
self.fit_kwargs = fit_kwargs
super().__init__(
base_model=_HoltWintersAdapter(
trend=self.trend,
damped_trend=self.damped_trend,
seasonal=self.seasonal,
seasonal_periods=self.seasonal_periods,
initialization_method=self.initialization_method,
initial_level=self.initial_level,
initial_trend=self.initial_trend,
initial_seasonal=self.initial_seasonal,
use_boxcox=self.use_boxcox,
bounds=self.bounds,
dates=self.dates,
freq=self.freq,
missing=self.missing,
smoothing_level=self.smoothing_level,
smoothing_trend=self.smoothing_trend,
smoothing_seasonal=self.smoothing_seasonal,
damping_trend=self.damping_trend,
**self.fit_kwargs,
)
)
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]:
"""Get default grid for tuning hyperparameters.
This grid tunes parameters: ``trend``, ``damped_trend``, ``use_boxcox``.
If ``self.seasonal`` is not None, then it also tunes ``seasonal`` parameter.
Other parameters are expected to be set by the user.
Returns
-------
:
Grid to tune.
"""
grid: Dict[str, "BaseDistribution"] = {
"trend": CategoricalDistribution(["add", "mul", None]),
"damped_trend": CategoricalDistribution([False, True]),
"use_boxcox": CategoricalDistribution([False, True]),
}
if self.seasonal is not None:
grid.update({"seasonal": CategoricalDistribution(["add", "mul", None])})
return grid
[docs]class HoltModel(
PerSegmentModelMixin,
NonPredictionIntervalContextIgnorantModelMixin,
NonPredictionIntervalContextIgnorantAbstractModel,
):
"""
Holt etna model.
This is a restricted version of :py:class:`~etna.models.holt_winters.HoltWintersModel`.
And it corresponds to :py:class:`statsmodels.tsa.holtwinters.Holt`.
Notes
-----
The model :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` is used in the implementation.
In statsmodels package the model :py:class:`statsmodels.tsa.holtwinters.Holt` is implemented
as a restricted version of :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` model.
This model supports in-sample and out-of-sample prediction decomposition.
Prediction components for Holt model are: level and trend.
For in-sample decomposition, components are obtained directly from the fitted model. For out-of-sample,
components estimated using an analytical form of the prediction function.
"""
def __init__(
self,
exponential: bool = False,
damped_trend: bool = False,
initialization_method: str = "estimated",
initial_level: Optional[float] = None,
initial_trend: Optional[float] = None,
smoothing_level: Optional[float] = None,
smoothing_trend: Optional[float] = None,
damping_trend: Optional[float] = None,
**fit_kwargs,
):
"""
Init Holt model with given params.
Parameters
----------
exponential:
Type of trend component. One of:
* False: additive trend
* True: multiplicative trend
damped_trend:
Should the trend component be damped.
initialization_method:
Method for initialize the recursions. One of:
* None
* 'estimated'
* 'heuristic'
* 'legacy-heuristic'
* 'known'
None defaults to the pre-0.12 behavior where initial values
are passed as part of ``fit``. If any of the other values are
passed, then the initial values must also be set when constructing
the model. If 'known' initialization is used, then ``initial_level``
must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if
applicable. Default is 'estimated'. "legacy-heuristic" uses the same
values that were used in statsmodels 0.11 and earlier.
initial_level:
The initial level component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
initial_trend:
The initial trend component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
smoothing_level:
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
smoothing_trend:
The beta value of the Holt's trend method, if the value is
set then this value will be used as the value.
damping_trend:
The phi value of the damped method, if the value is
set then this value will be used as the value.
fit_kwargs:
Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`.
"""
self.exponential = exponential
trend = "mul" if exponential else "add"
self.damped_trend = damped_trend
self.initialization_method = initialization_method
self.initial_level = initial_level
self.initial_trend = initial_trend
self.smoothing_level = smoothing_level
self.smoothing_trend = smoothing_trend
self.damping_trend = damping_trend
self.fit_kwargs = fit_kwargs
super().__init__(
base_model=_HoltWintersAdapter(
trend=trend,
damped_trend=self.damped_trend,
initialization_method=self.initialization_method,
initial_level=self.initial_level,
initial_trend=self.initial_trend,
smoothing_level=self.smoothing_level,
smoothing_trend=self.smoothing_trend,
damping_trend=self.damping_trend,
**self.fit_kwargs,
)
)
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]:
"""Get default grid for tuning hyperparameters.
Returns
-------
:
Grid to tune.
"""
return {
"exponential": CategoricalDistribution([False, True]),
"damped_trend": CategoricalDistribution([False, True]),
}
[docs]class SimpleExpSmoothingModel(
PerSegmentModelMixin,
NonPredictionIntervalContextIgnorantModelMixin,
NonPredictionIntervalContextIgnorantAbstractModel,
):
"""
Exponential smoothing etna model.
This is a restricted version of :py:class:`~etna.models.holt_winters.HoltWintersModel`.
And it corresponds to :py:class:`statsmodels.tsa.holtwinters.SimpleExpSmoothing`.
Notes
-----
The model :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` is used in the implementation.
In statsmodels package the model :py:class:`statsmodels.tsa.holtwinters.SimpleExpSmoothing` is implemented
as a restricted version of :py:class:`statsmodels.tsa.holtwinters.ExponentialSmoothing` model.
This model supports in-sample and out-of-sample prediction decomposition.
For in-sample decomposition, level component is obtained directly from the fitted model. For out-of-sample,
it estimated using an analytical form of the prediction function.
"""
def __init__(
self,
initialization_method: str = "estimated",
initial_level: Optional[float] = None,
smoothing_level: Optional[float] = None,
**fit_kwargs,
):
"""
Init Exponential smoothing model with given params.
Parameters
----------
initialization_method:
Method for initialize the recursions. One of:
* None
* 'estimated'
* 'heuristic'
* 'legacy-heuristic'
* 'known'
None defaults to the pre-0.12 behavior where initial values
are passed as part of ``fit``. If any of the other values are
passed, then the initial values must also be set when constructing
the model. If 'known' initialization is used, then ``initial_level``
must be passed, as well as ``initial_trend`` and ``initial_seasonal`` if
applicable. Default is 'estimated'. "legacy-heuristic" uses the same
values that were used in statsmodels 0.11 and earlier.
initial_level:
The initial level component. Required if estimation method is "known".
If set using either "estimated" or "heuristic" this value is used.
This allows one or more of the initial values to be set while
deferring to the heuristic for others or estimating the unset
parameters.
smoothing_level:
The alpha value of the simple exponential smoothing, if the value
is set then this value will be used as the value.
fit_kwargs:
Additional parameters for calling :py:meth:`statsmodels.tsa.holtwinters.ExponentialSmoothing.fit`.
"""
self.initialization_method = initialization_method
self.initial_level = initial_level
self.smoothing_level = smoothing_level
self.fit_kwargs = fit_kwargs
super().__init__(
base_model=_HoltWintersAdapter(
initialization_method=self.initialization_method,
initial_level=self.initial_level,
smoothing_level=self.smoothing_level,
**self.fit_kwargs,
)
)