import warnings
from enum import Enum
from typing import Dict
from typing import Optional
from typing import Tuple
import numpy as np
import pandas as pd
from typing_extensions import assert_never
from etna.datasets import TSDataset
from etna.distributions import BaseDistribution
from etna.distributions import IntDistribution
from etna.models.base import NonPredictionIntervalContextRequiredAbstractModel
[docs]class SeasonalityMode(str, Enum):
"""Enum for seasonality mode for DeadlineMovingAverageModel."""
month = "month"
year = "year"
@classmethod
def _missing_(cls, value):
raise NotImplementedError(
f"{value} is not a valid {cls.__name__}. Only {', '.join([repr(m.value) for m in cls])} seasonality allowed"
)
[docs]class DeadlineMovingAverageModel(
NonPredictionIntervalContextRequiredAbstractModel,
):
"""Moving average model that uses exact previous dates to predict.
Notes
_____
This model supports in-sample and out-of-sample prediction decomposition.
Prediction components are corresponding target seasonal lags (monthly or annual)
with weights of :math:`1/window`.
"""
def __init__(self, window: int = 3, seasonality: str = "month"):
"""Initialize deadline moving average model.
Length of the context is equal to the number of ``window`` months or years, depending on the ``seasonality``.
Parameters
----------
window:
Number of values taken for forecast for each point.
seasonality:
Only allowed values are "month" and "year".
"""
self.window = window
self.seasonality = SeasonalityMode(seasonality)
self._freqs_available = {"H", "D"}
self._freq: Optional[str] = None
def _validate_fitted(self):
"""Check if model is fitted."""
if self._freq is None:
raise ValueError("Model is not fitted! Fit the model before trying the find out context size!")
@property
def context_size(self) -> int:
"""Upper bound to context size of the model."""
self._validate_fitted()
cur_value = None
if self.seasonality is SeasonalityMode.year:
cur_value = 366
elif self.seasonality is SeasonalityMode.month:
cur_value = 31
else:
assert_never(self.seasonality)
if self._freq == "H":
cur_value *= 24
cur_value *= self.window
return cur_value
[docs] def get_model(self) -> "DeadlineMovingAverageModel":
"""Get internal model.
Returns
-------
:
Itself
"""
return self
[docs] def fit(self, ts: TSDataset) -> "DeadlineMovingAverageModel":
"""Fit model.
Parameters
----------
ts:
Dataset with features
Returns
-------
:
Model after fit
"""
# we make a normalization to treat "1d" like "D"
freq = pd.tseries.frequencies.to_offset(ts.freq).freqstr
if freq not in self._freqs_available:
raise ValueError(f"Freq {freq} is not supported! Use daily or hourly frequency!")
self._freq = freq
columns = set(ts.columns.get_level_values("feature"))
if columns != {"target"}:
warnings.warn(
message=f"{type(self).__name__} does not work with any exogenous series or features. "
f"It uses only target series for predict/\n "
)
return self
@staticmethod
def _get_context_beginning(
df: pd.DataFrame, prediction_size: int, seasonality: SeasonalityMode, window: int
) -> pd.Timestamp:
"""Get timestamp where context begins.
Parameters
----------
df:
Time series in a wide format.
prediction_size:
Number of last timestamps to leave after making prediction.
Previous timestamps will be used as a context for models that require it.
seasonality:
Seasonality.
window:
Number of values taken for forecast of each point.
Returns
-------
:
Timestamp with beginning of the context.
Raises
------
ValueError:
if context isn't big enough
"""
df_history = df.iloc[:-prediction_size]
history_timestamps = df_history.index
future_timestamps = df.iloc[-prediction_size:].index
# if we have len(history_timestamps) == 0, then len(df) <= prediction_size
if len(history_timestamps) == 0:
raise ValueError(
"Given context isn't big enough, try to decrease context_size, prediction_size or increase length of given dataframe!"
)
if seasonality is SeasonalityMode.month:
first_index = future_timestamps[0] - pd.DateOffset(months=window)
elif seasonality is SeasonalityMode.year:
first_index = future_timestamps[0] - pd.DateOffset(years=window)
else:
assert_never(seasonality)
if first_index < history_timestamps[0]:
raise ValueError(
"Given context isn't big enough, try to decrease context_size, prediction_size or increase length of given dataframe!"
)
return first_index
def _get_previous_date(self, date, offset):
"""Get previous date using seasonality offset."""
if self.seasonality == SeasonalityMode.month:
prev_date = date - pd.DateOffset(months=offset)
elif self.seasonality == SeasonalityMode.year:
prev_date = date - pd.DateOffset(years=offset)
else:
assert_never(self.seasonality)
return prev_date
def _make_prediction_components(
self, result_template: pd.DataFrame, context: pd.DataFrame, prediction_size: int
) -> pd.DataFrame:
"""Estimate prediction components using ``result_template`` as a base and ``context`` as a context."""
index = result_template.index
end_idx = len(result_template)
start_idx = end_idx - prediction_size
components_data = []
for i in range(start_idx, end_idx):
obs_components = []
for w in range(1, self.window + 1):
prev_date = self._get_previous_date(date=result_template.index[i], offset=w)
obs_components.append(context.loc[prev_date].values)
components_data.append(obs_components)
# shape: (prediction_size, window, num_segments)
raw_components = np.asarray(components_data, dtype=float)
# shape: (prediction_size, num_segments, window)
# this is needed to place elements in the right order
raw_components = np.swapaxes(raw_components, -1, -2)
# shape: (prediction_size, num_segments * window)
raw_components = raw_components.reshape(raw_components.shape[0], -1)
raw_components /= self.window
components_names = [f"target_component_{self.seasonality.name}_lag_{w}" for w in range(1, self.window + 1)]
segment_names = context.columns.get_level_values("segment")
column_names = pd.MultiIndex.from_product([segment_names, components_names], names=("segment", "feature"))
target_components_df = pd.DataFrame(data=raw_components, columns=column_names, index=index[start_idx:end_idx])
return target_components_df
def _make_predictions(
self, result_template: pd.DataFrame, context: pd.DataFrame, prediction_size: int
) -> np.ndarray:
"""Make predictions using ``result_template`` as a base and ``context`` as a context."""
index = result_template.index
start_idx = len(result_template) - prediction_size
end_idx = len(result_template)
for i in range(start_idx, end_idx):
for w in range(1, self.window + 1):
prev_date = self._get_previous_date(date=result_template.index[i], offset=w)
result_template.loc[index[i]] += context.loc[prev_date]
result_template.loc[index[i]] = result_template.loc[index[i]] / self.window
result_values = result_template.values[-prediction_size:]
return result_values
def _forecast(
self, df: pd.DataFrame, prediction_size: int, return_components: bool = False
) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]:
"""Make autoregressive forecasts on a wide dataframe."""
context_beginning = self._get_context_beginning(
df=df, prediction_size=prediction_size, seasonality=self.seasonality, window=self.window
)
history = df.loc[:, pd.IndexSlice[:, "target"]]
history = history.iloc[:-prediction_size]
history = history.loc[history.index >= context_beginning]
if np.any(history.isnull()):
raise ValueError("There are NaNs in a forecast context, forecast method requires context to be filled!")
num_segments = history.shape[1]
index = pd.date_range(start=context_beginning, end=df.index[-1], freq=self._freq)
result_template = np.append(history.values, np.zeros((prediction_size, num_segments)), axis=0)
result_template = pd.DataFrame(result_template, index=index, columns=history.columns)
result_values = self._make_predictions(
result_template=result_template, context=result_template, prediction_size=prediction_size
)
df = df.iloc[-prediction_size:]
y_pred = result_values[-prediction_size:]
df.loc[:, pd.IndexSlice[:, "target"]] = y_pred
target_components_df = None
if return_components:
target_components_df = self._make_prediction_components(
result_template=result_template, context=result_template, prediction_size=prediction_size
)
return df, target_components_df
[docs] def forecast(self, ts: TSDataset, prediction_size: int, return_components: bool = False) -> TSDataset:
"""Make autoregressive forecasts.
Parameters
----------
ts:
Dataset with features
prediction_size:
Number of last timestamps to leave after making prediction.
Previous timestamps will be used as a context.
return_components:
If True additionally returns forecast components
Returns
-------
:
Dataset with predictions
Raises
------
NotImplementedError:
if return_components mode is used
ValueError:
if model isn't fitted
ValueError:
if context isn't big enough
ValueError:
if forecast context contains NaNs
"""
self._validate_fitted()
df = ts.to_pandas()
new_df, target_components_df = self._forecast(
df=df, prediction_size=prediction_size, return_components=return_components
)
ts.df = new_df
if return_components:
ts.add_target_components(target_components_df=target_components_df)
return ts
def _predict(
self, df: pd.DataFrame, prediction_size: int, return_components: bool = False
) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]:
"""Make predictions on a wide dataframe using true values as autoregression context."""
context_beginning = self._get_context_beginning(
df=df, prediction_size=prediction_size, seasonality=self.seasonality, window=self.window
)
context = df.loc[:, pd.IndexSlice[:, "target"]]
context = context.loc[context.index >= context_beginning]
if np.any(context.isnull()):
raise ValueError("There are NaNs in a target column, predict method requires target to be filled!")
num_segments = context.shape[1]
index = pd.date_range(start=df.index[-prediction_size], end=df.index[-1], freq=self._freq)
result_template = pd.DataFrame(np.zeros((prediction_size, num_segments)), index=index, columns=context.columns)
result_values = self._make_predictions(
result_template=result_template, context=context, prediction_size=prediction_size
)
df = df.iloc[-prediction_size:]
y_pred = result_values[-prediction_size:]
df.loc[:, pd.IndexSlice[:, "target"]] = y_pred
target_components_df = None
if return_components:
target_components_df = self._make_prediction_components(
result_template=result_template, context=context, prediction_size=prediction_size
)
return df, target_components_df
[docs] def predict(self, ts: TSDataset, prediction_size: int, return_components: bool = False) -> TSDataset:
"""Make predictions using true values as autoregression context (teacher forcing).
Parameters
----------
ts:
Dataset with features
prediction_size:
Number of last timestamps to leave after making prediction.
Previous timestamps will be used as a context.
return_components:
If True additionally returns prediction components
Returns
-------
:
Dataset with predictions
Raises
------
NotImplementedError:
if return_components mode is used
ValueError:
if model isn't fitted
ValueError:
if context isn't big enough
ValueError:
if forecast context contains NaNs
"""
self._validate_fitted()
df = ts.to_pandas()
new_df, target_components_df = self._predict(
df=df, prediction_size=prediction_size, return_components=return_components
)
ts.df = new_df
if return_components:
ts.add_target_components(target_components_df=target_components_df)
return ts
[docs] def params_to_tune(self) -> Dict[str, BaseDistribution]:
"""Get default grid for tuning hyperparameters.
This grid tunes ``window`` parameter. Other parameters are expected to be set by the user.
Returns
-------
:
Grid to tune.
"""
return {"window": IntDistribution(low=1, high=10)}
__all__ = ["DeadlineMovingAverageModel"]